[image: image20.png]

Skyline

 AI System

Thanks for your purchase, and welcome to the Skyline AI System, brought to you by SpinalSoft (AU).

Contents

Contents
2

Introduction
4

Behaviour Trees
4

Decision Trees
5

Finite State Machines
5

Blackboard
5

Steering Behaviours
5

IMPORTANT NOTICE
7

Boring Legal Stuff
9

Preamble
9

Definitions
9

Headings
9

Simple Description
9

End User License Terms:
10

The AI Editor Plugin
11

Installation
11

Description
12

Actions Tab
12

Evaluators Tab
13

Behaviour Tree Tab
13

Decision Tree Tab
14

Finite State Machine Tab
14

File Menu
14

Create Menu
14

Details
15

Actions Tab
15

Evaluators Tab
19

Behaviour Tree Tab
20

Decision Tree Tab
23

Finite State Machine Tab
24

File Menu
26

Create Menu
27

The AI Editor Scripts
28

Installation
28

Details
29

blackboard.lua
29

Other Scripts
30

Initialize Function
34

Update Function
34

Clean Up Function
34

The Behaviours Script
41

SEEK
43

FLEE
43

PURSUE
43

EVADE
43

ARRIVAL
43

WANDER
43

FOLLOW
43

OBSTACLE AVOIDANCE
44

OTHER VARIABLES that need to be set:
44

COMMENTS
44

Introduction

The Skyline AI System consists of three distinct parts:

1. A Skyline Plugin that allows you to create various types of AI files; and

2. Several files that allow you to include the AI files you created in the Plugin in your Skyline game; and
3. A file that you can use to integrate AI Behaviours on your Entities.

This manual will guide you through the use of the Plugin and the various code files, starting with the Plugin.

One thing I'd better do before diving in, is to explain what types of AI are available in this download.

Behaviour Trees

Below is a really great definition of what a Behaviour Tree is (and certainly much better than I could have written!):

“Unlike a Finite State Machine, or other systems used for AI programming, a behaviour tree is a tree of hierarchical nodes that control the flow of decision making of an AI entity. At the extents of the tree, the leaves, are the actual commands that control the AI entity, and forming the branches are various types of utility nodes that control the AI’s walk down the trees to reach the sequences of commands best suited to the situation.

The trees can be extremely deep, with nodes calling sub-trees which perform particular functions, allowing for the developer to create libraries of behaviours that can be chained together to provide very convincing AI behaviour. Development is highly iterable, where you can start by forming a basic behaviour, then create new branches to deal with alternate methods of achieving goals, with branches ordered by their desirability, allowing for the AI to have fallback tactics should a particular behaviour fail. This is where they really shine.”
http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php

Decision Trees

Decision Trees (as implemented here) are simple binary flowchart-like structures that consist of branches (Evaluators) and TWO leaves per branch. These leaves can be either Evaluators or Actions. The AI walks down the tree evaluating each branch in order, and carrying out an Action where appropriate. The Decision Tree will ALWAYS start from the top most node and move down the tree.

Decision Trees are simple to understand, but can become unwieldy. They are also not great for circumstances where you need more than two possible outcomes for a branch, unless you are prepared to add more branches to narrow down the choice.

Finite State Machines

Finite State Machines are behaviour models that have a fixed number of States that they can be in at any one time. They use input data to decide if they need to transition (i.e. move) into a different State, and they can only ever be in ONE State at any one time.

For example, the brain of an Entity can easily be implemented using a Finite State Machine, where every State represents something that the Entity can do, such as attack, pursue, evade, flee etc.
Blackboard

For those of us old enough to remember blackboards in school, the Blackboard used in this system is just what it sounds like, somewhere to store data that is available to ALL scripts. The implementation here makes extensive use of Skyline's global variables, but has the added advantage of associating each piece of stored data with an Entity.

Steering Behaviours

The most famous description of Steering Behaviours was presented by Craig Reynolds to GDC 1999 in his paper 'Steering Behaviors for Autonomous Characters' (http://www.red3d.com/cwr/steer/). Whilst this paper contains a whole host of Steering Behaviours, I have only implemented some of them here:
Seek – this Behaviour steers an Entity towards a target Entity, using the current position of the target Entity as its goal.

Flee – this is the opposite of Seek, and steers an Entity away from the target Entity.

Pursue – this is similar to Seek, but uses an estimate of the future position of the target Entity as its goal.
Evade – this is the opposite of Pursue.

Wander – this makes an Entity move in a way that appears almost random. It is updated in such a way that each update is related to the previous one, so the Entity won't make any sudden changes of direction.

Arrive – this makes an Entity slow down when it is within a certain distance of the target Entity. It MUST be used with Seek or Pursue.

Follow – this is similar to Seek, but once the Entity gets within a certain distance of its goal, it will attempt to match the movements of the target Entity.

Obstacle Avoidance – this is a simple system that allows an Entity to steer around any obstacles in its path. It uses a simple 3 feeler approach with one feeler at -45 degrees, one at 0 degrees and one at +45 degrees to its current direction of travel.

Once again, thank you for your purchase, and I hope you go on to create many amazing games with the Skyline Game Engine ©.

Shando

If you get stuck and need help, just contact me, either through the Skyline Forum, or via PM.

IMPORTANT NOTICE

Most of the code used to create the various AI Systems (with the exception of the Steering Behaviours) is my conversion of the mixture of C++ and Lua code that accompanies the wonderful book 'Learning Game AI Programming with Lua' by David Young (which I highly recommend).

This book can be obtained from Amazon (Kindle & Print):

http://www.amazon.com/Learning-Game-AI-Programming-Lua/dp/1783281332
and Packt (eBook & Print):

http://www.packtpub.com/game-development/learning-game-ai-programming-lua
as well as several other places.

The Steering Behaviours code is my Lua translation of the C++ code from PandAI (http://www.etc.cmu.edu/projects/pandai/index.html), which was written for the Panda3D (

 HYPERLINK "http://www.panda3d.org/"
http://www.panda3d.org/) engine.
The Pandai code is released under a modified BSD Licence:

Copyright (c) 2008, Carnegie Mellon University. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of Carnegie Mellon University nor the names of other contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The code from David's book is released with the following Licence:

Copyright (c) 2013 David Young dayoung@goliathdesigns.com
This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.
Boring Legal Stuff
Copyright (c) 2017 SpinalSoft (AU)
Preamble
The following terms and conditions are to be read carefully before you use this software.
THIS IS A LEGAL AGREEMENT BETWEEN YOU AND SpinalSoft (AU). If you do not agree to these terms and conditions you should not use our Products. BY PURCHASING, DOWNLOADING, COPYING, OR OTHERWISE USING THIS PRODUCT, YOU ACKNOWLEDGE THAT YOU HAVE READ THESE TERMS AND CONDITIONS, UNDERSTAND THEM, AND AGREE TO BE BOUND BY THEM.
Definitions
Product, as used herein, shall mean the Skyline AI System.
Skyline Game Engine ©, as used herein, shall mean the Skyline Game Engine © developed by aRa Aurasoft.
Headings
Headings, where used herein, are for purely descriptive purposes and have no bearing on the meaning of this agreement.
Simple Description
You can use or modify this Product according to your need. However you are not permitted to market, distribute, give, transfer, sell or sublicense this Product in any format except as part of an application that you have developed with the Skyline Game Engine ©.
All contents provided in this Product are copyright and owned by SpinalSoft (AU).
The Product may be used royalty free:

· for advertising or promotional use; and

· for educational purposes; and

· for personal, or commercial use; and

· in books, magazines, digital comics, multimedia, video games and movies.
The Product may NOT be used to create:

· political or religious propaganda; or

· hateful, racist or sexist content; or

· content that is illegal in any jurisdiction in which your final application is to be released.
End User License Terms:
1. SKYLINE GAME ENGINE © COPY LICENSE
You may download this Product from the Skyline Game Engine © Asset Store onto any computer for which you hold a license to use the Skyline Game Engine ©. Use of this Product is restricted to the creation of any application you develop using the Skyline Game Engine ©, unless specifically licensed to do otherwise by SpinalSoft (AU). This is a license, not a transfer of title, and you:
(a) may not create derivative works based on this Product for retail sale or distribution by any means other than as provided by this agreement;

(b) may not remove any copyright or other proprietary notices; and

(c) agree to prevent any copying of this Product that you download for your use.

2. RESTRICTIONS OF THIS LICENSE
This Product is intended to be used by ONE individual - the license owner. This license is only transferable if transferred with a copy of the Skyline Game Engine © for which you hold a valid license issued by aRa Aurasoft.
3. OWNERSHIP
This Product and all of its content is proprietary material of SpinalSoft (AU) and may not be copied, reproduced, published, uploaded, posted, transmitted, or distributed in any way, other than as allowed for in this License, without the written permission of SpinalSoft (AU).
4. TERMINATION OF THIS LICENSE
SpinalSoft (AU) may terminate this license at any time if you are in breach of the terms and conditions of use. Upon such termination you agree to immediately destroy all copies of this Product and all of its accompanying documentation.
5. DISCLAIMER AND WARRANTY
SpinalSoft (AU) provides the Product specified in this agreement “AS IS” without warranty of any kind. You assume total responsibility and risk for your use of this Product.
The AI Editor Plugin

Installation

To install the AI Editor Plugin, simply extract the files in the AI_Editor.zip file, and place the created AI_Editor folder in the Editor Plugins folder of your Skyline installation.

The path to the AI_Editor folder should look something like this:

D:\Aurasoft\SkylineSDK\Editor Plugins\AI_Editor
In this folder should be three files:
AI_Editor.lua

AI_Editor.ui

generic_functions.lua

In order, these are:

AI_Editor.lua
This file contains the code which runs the Plugin.

AI_Editor.ui
This file contains the description of how the Plugin should be displayed on the Screen. It was created in Qt Designer.
generic_functions.lua
This file contains several useful functions that are used in most of my Plugins and are detailed in the separate 'Generic Functions' document.

Once you have placed the files in the correct folder, start Skyline, and the Plugin should now be available from the Plugins Menu in the Skyline Editor.

Description

This is the Skyline AI Editor:

[image: image1.png]
The Skyline AI System contains five tabs and a couple of menus:

Actions Tab
In this tab you will create Actions to be used by your AI System. These Actions are functions that will be called by the rest of the AI System. Each Action contains 3 functions:

Initialize Function – This is called when the Action is first called.

Update Function – This is called (possibly) repeatedly whilst the Action is running and is used similarly to the normal Skyline onUpdate () function.

Clean Up – This is called when the Action stops running.

Evaluators Tab

In this tab you will create Evaluators to be used by your AI System. These Evaluators are functions that will be called by the rest of the AI System. Each Evaluator is a single function that will only be called once, and MUST return either True or False.
Behaviour Tree Tab
In this tab you can create a Behaviour Tree to be used in your AI System. A Behaviour Tree consists of the following structures:

Control Flow Nodes

Selectors
These are the equivalent of a series of if .. then statements, where all children attached to the Selector will be executed in order until one succeeds, and the Selector will return true. If ALL children fail, then the Selector will return false. Mostly, these will have Sequences as their children, until the last child, which will tend to be an Action.
Sequences
The children in a Sequence will all be executed in order until a child fails to execute. A Sequence will return false if any child fails, or true if ALL children succeed. Mostly, they will have an Evaluator as their first child.

Both of these type of nodes can have children.
Execution Nodes
Actions
These are functions that execute Behaviours.

Evaluators
These are functions that return either true or false. They are normally used to determine the flow of a Selector, or a Sequence.

Both of these type of nodes cannot have children.

Decision Tree Tab
In this tab you can create a Decision Tree to be used in your AI System. A Decision Tree consists of the following structures:

Actions
These are functions that execute behaviours, and are considered to be the leaves of the Decision Tree.

Evaluators
These are functions that return either true or false. They are considered to be the branches of the Decision Tree.

Finite State Machine Tab
In this tab you can create a Finite State Machine to be used in your AI System. A Finite State Machine consists of the following structures:

States
These are the modes that your AI System can move between.

Transitions
These are functions that return either true or false. They determine whether one State should be stopped and a different State started up.

File Menu
This is a standard Windows File Menu that allows you to Load and Save the data you have entered in the AI Editor. This data, not to be confused with the '.lua' files that you can create with the AI Editor, is saved in '.ai' files, anywhere on your computer.

Create Menu

This is also a standard Windows Menu that allows you to create the actual '.lua' files that are required to use the AI System. These files are created from the data you have entered in the various tabs of the AI Editor.
Details

Actions Tab
In this tab, as shown in the previous screenshot, you create the Actions that will be required in your AI System.

This tab consists of four areas:

Firstly, a table containing a list of the Actions that you have created:

[image: image2.png]
To select an Action in the Actions Table, simply left-click on it. Doing so will populate the relevant fields in the rest of the tab.

To the right of the table, there is an input box and some buttons allowing you to create, edit, delete etc. your Actions:
[image: image3.png]
As you can see in the image, there are five buttons:

New – This allows you to create a new Action, and will enable the Name field.

Edit – This allows you to edit an Action that you have selected in the Actions Table, and will also enable the Name field.

Delete – This allows you to delete an Action that you have selected in the Actions Table.
Cancel – This allows you to cancel the creation, or editing, of an Action.
Save – This allows you to save the Action, that are currently creating or editing.
NB: When you click on the New or Edit button, the only field that will be enabled is the Name field. To enable the three code fields, you will need to press the 'Enter' key whilst in the Name field.

NB2: There are currently NO warnings when you select any of these buttons, so be careful, especially with the Delete button, as there is no undo functionality!

When creating a new Action, or changing the name of an existing Action, you must be careful to only use the following characters:

A-z

0-9

_ (underscore)

Finally, directly underneath the row of buttons is a (normally invisible) message field that will be used to give you error messages from time to time, depending on the actions you are currently performing. For example, if you use any character not listed above, such as '(', or '%', then you will receive this error message:

You have used an invalid Character in the Name of the Action!
The AI Editor will now prevent you from continuing until you have either fixed the name, and pressed 'Enter', or clicked on the Cancel button.

When you press the 'Enter' key whilst in the Name field, the three code fields will be enabled, and will automatically be populated with the name of the function based on the name you entered in the Name field. For example, the 'Initialize' function will look something like this:

local act_testInitialize = function (objID)

return “TERMINATED”;

end

where 'test' was the text you entered in the Name field.

Since I am talking about the 'Initialize' function, I should really explain all of the three functions now.

Basically, the current status of the Action determines which code to call. Actions can be in one of three possible statuses, which will determine the code that gets called. These are:

UNINITIALIZED

RUNNING

TERMINATED
Initialize – this code is called when an Action is instantiated (the Action would have a status of 'UNINITIALIZED'). It is only run ONCE, and MUST return either 'RUNNING' or 'TERMINATED'

Update – this code can be called multiple times (similar to the standard onUpdate () function in your normal scripts). It will only run if the status of the Action is 'RUNNING'. This code MUST return either 'RUNNING' or 'TERMINATED'.

Clean Up – this code is run if the status of an Action is 'TERMINATED'. It is only run ONCE, and does NOT have any return values. It will automatically change the current status of the Action to 'UNINITIALIZED', so that the Action can be used again, if required.

NB: It is important to note that you MUST NOT change the first line of the three snippets of code (e.g. local act_testInitialize = function (objID)), as they are crucial to the successful execution of the AI code.

Finally, in the middle right of this tab, there is a message box giving some helpful tips on how to create your Actions:

[image: image4.png]
Evaluators Tab
In this tab, as shown below, you create the Evaluators that will be required in your AI System.

[image: image5.png]
This tab is almost identical to the Actions tab, so hopefully won't need much explaining! The only real difference is that an Evaluator only has one piece of code, and this code MUST return either 'TRUE' or 'FALSE'.
Behaviour Tree Tab
In this tab, as shown below, you can create a Behaviour Tree for use in your AI System.

[image: image6.png]
Before we start exploring this tab, I must point out that the Behaviour Tree, Decision Tree and Finite State Machine tabs will ONLY be enabled if you have created at least ONE Action, and ONE Evaluator.

As you can see in the screenshot above, this tab consists of four main areas, with the tree itself taking up a large proportion of the tab.

The only things I will mention about the tree are that you can:

· expand and collapse the various branches by clicking on the little arrows to the left of each branch; and

· select an item by clicking on it.

The right hand side of the tab contains three separate sections:
[image: image7.png]
Firstly, we have a similar area to the previous two tabs that contains the buttons to create, edit, delete etc. items in your Behaviour Tree.

Secondly, this section also contains two drop-down boxes:

TYPE – this allows you to select the type of the node in your tree from one of Action, Evaluator, Selector and Sequence.

DETAIL – this drop-down is only available if you have selected Action or Evaluator in the TYPE drop-down, and allows you to select one of your previously created Actions or Evaluators.

As per the previous tabs, these drop-downs will only be available if you have clicked on the New Item, New Sub-Item or Edit button.

The Edit, Delete, Cancel and Save buttons work identically to those in the Actions and Evaluators tabs. Except that, the Delete button will delete the selected node AND ANY CHILDREN attached to that node. So again, be careful as there is no warning, and no undo!

New Item – this button allows you to create a new node AT THE SAME LEVEL as the node you have selected in the tree.

New Sub-Item – this button allows you to create a new node AT THE NEXT LEVEL DOWN from the node you have selected in the tree.

Once again, below the buttons is a message box for system messages.

Finally, the bottom right of the tab contains the usual information box, as well as a large button labelled 'Check Behaviour Tree for ERRORS':

[image: image8.png]
This button will only be enabled if you have added branches to you tree, and will perform a relatively simple check on your tree to ensure that it is well formed. It WILL NOT check your tree for errors in your code flow, or anything like that.
Decision Tree Tab
In this tab, as shown below, you can create a Decision Tree for use in your AI System.

[image: image9.png]
This tab is almost identical to the Behaviour Tree, so I won't go into much detail.

The only thing to mention here, is that this tree is made up solely of Branches (which are Evaluators), and Leaves (which are Actions).

Branches MUST have exactly two children, and Leaves MUST NOT have any children.

Finite State Machine Tab
In this tab, as shown below, you can create a Finite State Machine for use in your AI System.
[image: image10.png]
This tab is composed of several sections, the main two of which are simple tables (on the left hand side) displaying the States (the top one), and the Transitions (the bottom one). Suffice to say that you can select a State or a Transition for editing, deletion etc. by simply clicking on it.

The top section on the right hand side contains a single drop-down allowing you to select the 'INITIAL STATE'. This is the State that will be the first State to run when you start up your Finite State Machine:

[image: image11.png]
Obviously, you can only select this once you have created at least one State.

Immediately below this drop-down is this section:

[image: image12.png]
This is where you create your States.

The Name field works in exactly the same way as the Name field in the Actions and Evaluators tabs.

You will notice from the above that each State only contains a SINGLE Action.

The other buttons, Edit State, Delete State, Cancel State Changes and Save State, all work in the same way as their corresponding buttons in the other tabs, and there is no undo.

The next box contains the section for setting up your Transitions:

[image: image13.png]
It also contains the ubiquitous Message field.

This section should be fairly easy to understand as it is simply allowing you to set up how to move between the States.

Basically, you have a FROM STATE field to select the State to move from, a TO STATE field to select the new State to move to, and an EVALUATOR field to select the Evaluator that determines if a move between the two States is required.

Once again, the buttons function in the same way as their counterparts.

And, last, but not least, we have the information box and a large button 'Check Finite State Machine for ERRORS':

[image: image14.png]
The button will, as per the Behaviour Tree and Decision Tree tabs, perform a simple check of your Finite State Machine. It will check that each State has an Action and a Transition.

File Menu
[image: image15.png]
This menu has four options:
New – This option will erase all data in the AI Editor, so you can create a new version. REMEMBER that there is no warning, and no undo!
Load – This option will open a standard Windows File Dialog, allowing you to load a previously saved '.ai' file.
Save – If an existing '.ai' file is loaded in the AI Editor, then this button will save the current state of the AI Editor into this file. If no '.ai' file has been loaded, then this button will work as if you had selected the 'Save As' option.
Save As - This option will open a standard Windows File Dialog, allowing you to save the current state of the AI Editor into an '.ai' file of your choosing.
Create Menu

This is also a standard Windows Menu that allows you to create the actual '.lua' files that are required to use the AI System. These files are created from the data you have entered in the various tabs of the AI Editor.
[image: image16.png]
This Menu contains six options:

Create Behaviour Tree Script

This option will create the bt_code_new.lua file.

Create Decision Tree Script

This option will create the dt_code_new.lua file.

Create Finite State Machine Script

This option will create the fsm_code_new.lua file.

Create Actions Script

This option will create the actions_code_new.lua file.

Create Evaluators Script

This option will create the evaluators_code_new.lua file.

Create All Scripts

This option will create all of the above scripts (where applicable) with one click.

That's the AI Editor covered, so I'll now move on to the scripts, including the ones mentioned above.

The AI Editor Scripts

Installation

To install the AI Editor Scripts, simply extract the files in the AI_Editor_Scripts.zip file, and place the extracted files in the Scripts folder of your Game.

The zip file contains the following scripts:

action.lua

actions_code_new.lua

behaviortree.lua

behaviortreenode.lua

bt_code_new.lua

blackboard.lua

decisionbranch.lua

decisiontree.lua

dt_code_new.lua

evaluators_code_new.lua

finitestate.lua

finitestatemachine.lua

finitestatetransition.lua

fsm_code_new.lua

The *_code_new.lua files are just examples to show you what the files generated from the AI Editor will look like and don’t contain any useful code. I'll be explaining how to use these files later on in this section.

Firstly, though, I'll give a quick run down on the other files:

action.lua - this file contains the code required to run Action functions.

behaviortree.lua and behaviortreenode.lua – these files are required if you want to use Behaviour Trees.

blackboard.lua – this file is necessary for the AI System to operate correctly.

decisionbranch.lua and decisiontree.lua – these files are required if you want to use Decision Trees.

finitestate.lua, finitestatemachine.lua and finitestatetransition.lua – these files are required if you want to use Finite State Machines.

Details
blackboard.lua

This script is the only script mentioned above that has accessible functions:
bb_Set (bbID, bbType, bbValue)
This function saves the value, specified by the parameters, to the Blackboard. It has no return value:

bb_Get (bbID, bbType)
This function returns the value, for the specified parameters, held in the Blackboard.

bb_Initialise ()
This function creates an empty Blackboard, and will delete any currently stored values, so use with care! It has no return value.

bb_Delete (bbID, bbType)
This function removes the specified data from the Blackboard, and returns true if the data is successfully deleted, or false otherwise.

bb_getTableLength (inTbl)
Sometimes, the '#' function of a Lua table does not return the correct count of the number of values in the table. So this function was created as a special helper function that will return the correct number of items in the table specified by the inTbl parameter.

NB: an identical function getTableLength (inTbl) is also available in the generic_functions.lua file.

The parameters for the above functions (where applicable) are:

bbID – the Skyline ID of the Entity to which this data applies.
bbType – the 'name' of the data (e.g. 'health').
bbValue – the value of the data. This can be any Lua datatype (except tables).
The only way that the other scripts should be called is via the code generated from the AI Editor, which I'll now briefly explain.

Other Scripts
Firstly, you should have already decided which AI type(s) you want to use, and created the code for them. You will now have at least 3 generated files.

These two files:

actions_code_new.lua

evaluators_code_new.lua
and at least one of these:

bt_code_new.lua

dt_code_new.lua

fsm_code_new.lua
NB: When creating the above files, I would suggest that you rename them to match the name of the AI that will use them. For example, if you create an AI for an enemy soldier, then rename these files to something like this:

actions_enemy_soldier.lua

evaluators_enenmy_soldier.lua

bt_enemy_soldier.lua

dt_enemy_soldier.lua

fsm_enemy_soldier.lua
So, how to use these files? Well, in the microscript attached to your Entity, you need to make the following changes:

At the top of your microscript, you need to add the following lines (NB: From now on, I’ll be using the renamed versions of the files in the code):

sky.include “actions_enemy_soldier.lua”

sky.include “evaluators_enemy_soldier.lua”

sky.include “blackboard.lua”
As well as the sky.include line(s) for whichever AI type(s) you’re using:

Behaviour Tree:
sky.include “behaviortree.lua”

sky.include “behaviortreenode.lua”

sky.include “bt_enemy_soldier.lua”

Decision Tree:
sky.include “decisionbranch.lua”

sky.include “decisiontree.lua”

sky.include “dt_enemy_soldier.lua”
Finite State Machine:
sky.include “finitestate.lua”

sky.include “finitestatemachine.lua”

sky.include “finitestatetransition.lua”

sky.include “fsm_enemy_soldier.lua”

Finally, you need to create some global variables:

myActions = “”

myLogicDT = “”

}

myLogicBT = “”

} You only need to create the ones that you are

myLogicFSM = “”

} going to use.

Next, in the postInit () function, which you’ll have to create if it doesn’t already exist, you will need to add the following (again, depending on your AI type(s)):

myActions = act_actions (obj)

myLogicBT = behaviourTree (obj)

myLogicDT = decisionTree (obj)

myLogicFSM = finiteStateMachine (obj)

Finally, in the onUpdate (dt) function, you will need to add the following (once more, depending on your AI type(s)):

myLogicBT:BT_Update (dt)

myLogicDT:DT_Update (dt)

myLogicFSM:FSM_Update (dt)
So, your microscript should look something like this:

sky.include "actions_enemy_soldier.lua"

sky.include “behaviortree.lua”

sky.include “behaviortreenode.lua”

sky.include “bt_enemy_soldier.lua”

sky.include "blackboard.lua"

sky.include “decisionbranch.lua”

sky.include "decisiontree.lua"

sky.include “dt_enemy_soldier.lua”

sky.include "evaluators_enemy_soldier.lua"

sky.include “finitestate.lua”

sky.include “finitestatemachine.lua”

sky.include “finitestatetransition.lua”

sky.include “fsm_enemy_soldier.lua”

obj = -1

myActions = “”

myLogicBT = “”

myLogicDT = “”

myLogicFSM = “”

function onInit (objID)

obj = objID

end

function postInit ()

bb_Set (obj, "targetid", -1)

bb_Set (obj, "team", 1)

myActions = act_actions (obj)

myLogicBT = behaviorTree (obj, myActions)

myLogicDT = decisionTree (obj, myActions)

myLogicFSM = finiteStateMachine (obj, myActions)

end

function onUpdate ()

myLogicBT:BT_Update (dt)

myLogicDT:DT_Update (dt)

myLogicFSM:FSM_Update (dt)

end
NB: In my example above, I have used all three different types of AI System, just to show you how it’s done.

The only other change you will need to make, assuming you intend to use the Blackboard, is to add the following line to your SceneScript:

bb_Initialise ()

This sets up the global table used by the Blackboard system.
Over the next few pages I'll quickly explain the various *_enemy_soldier.lua files.

Just remember that these are the renamed versions of the *._code_new.lua files generated from the Create Menu above.
actions_enemy_soldier.lua
An example of the sort of code generated in this file is shown below:

local act_WanderInitialize = function (objID)

if (not AI_WANDER) then

aiTurnOn ("ai_wander")

end

if (AI_EVADE) then

aiTurnOff ("ai_evade")

end

return "RUNNING"

end

local act_WanderUpdate = function (self, objID, dt)

aiUpdate ()

return "TERMINATED"

end

local act_WanderCleanUp = function (objID)

-- not required

end

local act_EvadeInitialize = function (objID)

if (AI_WANDER) then

aiTurnOff ("ai_wander")

end

if (not AI_EVADE) then

aiTurnOn ("ai_evade")

end

return "RUNNING"

end

local act_EvadeUpdate = function (self, objID, dt)

aiUpdate ()

return "TERMINATED"

end

local act_EvadeCleanUp = function (objID)

-- not required

end
As you can see above, I have created two Actions, Wander and Evade, which each have the 3 functions you created in the Editor (Initialize, Update and CleanUp).

So, taking the Wander code as an example, and bearing in mind that there is also an Action for Evade:

Initialize Function

local act_WanderInitialize = function (objID)

if (not AI_WANDER) then

aiTurnOn ("ai_wander")

end

if (AI_EVADE) then

aiTurnOff ("ai_evade")

end

return "RUNNING"

end

This function is fairly straightforward in that it simply turns ON the Wander Behaviour, if not already on (the AI_WANDER Variable comes from the ai_script.lua file which I'll explain in much more detail in the next section of this manual), and turns OFF the Evade Behaviour, if that is currently on.

Since this function is the first function called, it also returns a value of RUNNING to tell the AI System to call the Update function. If you had returned TERMINATED, or UNINITIALIZED, then the system would simply call this function again.

Update Function

local act_WanderUpdate = function (self, objID, dt)

aiUpdate ()

return "TERMINATED"

end

This function calls the aiUpdate () function in the ai_script.lua file, which updates the position etc. of the Entity using any Behaviours that have been turned ON, in this case Wander. It also returns TERMINATED. This is due to the fact that I am using the other AI Systems (Decision Trees etc.) and as such the other system will take care of calling this function again (if required).

local act_WanderCleanUp = function (objID)

-- not required

end

Clean Up Function

Finally, we have the CleanUp (objID) function, that in this case does nothing. This is because we have already TERMINATED this Action, and we still want the Wander Behaviour to be enabled.
evaluators_enemy_soldier.lua
An example of the sort of code generated in this file is shown below:
function Evaluators_IsWithinDistance (objID)

local tmpBB = sky.getTable ("gbb")

local bRet, myTeam = bb_Get (objID, "team")

local tblTmp = { }

local iCount = bb_GetTableLength (tmpBB)

local minDist = 50

local tmpDist = 0

for x = 1, iCount do

if (tonumber (tmpBB[tostring (x)]["id"]) ~= objID) then

if (tmpBB[tostring (x)]["values"]["typ"] == "team") then

if (tmpBB[tostring (x)]["values"]["val"] ~= myTeam) then

table.insert (tblTmp, tmpBB[tostring (x)]["id"])

bRet = true

end

end

end

end

if (bRet) then

bRet = false

iCount = 0

for k, v in pairs (tblTmp) do

tmpDist = entity.getDistance (objID, v)

if (tmpDist < 50) then

if (tmpDist < minDist) then

iCount = v

minDist = tmpDist

bRet = true

end

end

end

if (bRet) then

bb_Set (objID, "targetid", iCount)

end

end

return bRet

end
There is slightly more to this function, since it needs to work out if the Entity is within a certain distance of the closest enemy.
In the first few lines, I'm just getting some values from the Blackboard, and setting a few other variables. Note that, I'm using the Blackboard system to store the Team that each Entity belongs to, so I can tell friend from foe.
Then, I loop through the Blackboard (the table gbb) to obtain a list of all enemy IDs (storing it in a temporary table – tmpBB):
for x = 1, iCount do

if (tonumber (tmpBB[tostring (x)]["id"]) ~= objID) then

if (tmpBB[tostring (x)]["values"]["typ"] == "team") then

if (tmpBB[tostring (x)]["values"]["val"] ~= myTeam) then

table.insert (tblTmp, tmpBB[tostring (x)]["id"])

bRet = true

end

end

end

end
One thing I will point out here, as it is very important, is that you have to convert Integers to Strings (toString (x) in the above code). This is because I’m using the global table system, which works a lot better if you only use String values.
The above code also sets a Boolean variable (bRet) that is set to true if an enemy is found.
The second half of this function tests the distance between the found enemies and the Entity to see if it is below the required threshold (50 in this example), and then finds which enemy is closest to the Entity. Once found, it sets this enemy as the targetid that is used in the Evade Behaviour.
if (bRet) then

bRet = false

iCount = 0

for k, v in pairs (tblTmp) do

tmpDist = entity.getDistance (objID, v)

if (tmpDist < 50) then

if (tmpDist < minDist) then

iCount = v

minDist = tmpDist

bRet = true

end

end

end

if (bRet) then

bb_Set (objID, "targetid", iCount)

end

end
Finally, this function returns the value of bRet, which is either going to be true, or false (which is exactly what is required for an Evaluator).
dt_enemy_soldier.lua
This file does require a small change by you. The very first line (sky.include “evaluators_enemy_soldier.lua” below) will be created as sky.include “evaluators_new_code.lua” by the AI Editor, so will need changing to match the name you have given to your files.
sky.include “evaluators_enemy_soldier.lua”

sky.include “decisionbranch.lua”

sky.include “decisiontree.lua”
function decisionTree (objid, myactions)

local tree = dtNew ()

local isWithinDistanceBranch = dbNew ()

local isVisibleBranch = dbNew ()

isWithinDistanceBranch:DB_AddChild (isVisibleBranch)

isWithinDistanceBranch:DB_AddChild (myactions.ACT_WanderAction (objid))

isWithinDistanceBranch:DB_SetEvaluator (function ()

if Evaluators_IsWithinDistance (objid) then

return 1

else

return 2

end

end

);

isVisibleBranch:DB_AddChild (myactions.ACT_EvadeAction (objid))

isVisibleBranch:DB_AddChild (myactions.ACT_WanderAction (objid))

isVisibleBranch:DB_SetEvaluator (function ()

if Evaluators_IsVisible (objid) then

return 1

else

return 2

end

end

);

tree:DT_SetBranch (isWithinDistanceBranch)

return tree

end
Whilst I won't go in to how a Decision Tree is created (I hope it's reasonably obvious from the above code?), I will briefly explain a few things:
1) The Tree itself is created using the dtNew () function.

2) The Branches are created using the dbNew () function.

3) Each Branch has two children and an Evaluator.

4) The return values for the Evaluators relate to true (1st value) and false (2nd value). The numbers represent which child to run (i.e. the one that was added first, or the one that was added second).

5) The starting Branch of the Tree is set using the DT_SetBranch () function.
bt_enemy_soldier.lua
This file also requires a small change by you. The very first line (sky.include “evaluators_enemy_soldier.lua” below) will be created as sky.include “evaluators_new_code.lua” by the AI Editor, so will need changing to match the name you have given to your files.
sky.include “evaluators_enemy_soldier.lua”

sky.include “behaviortree.lua”

sky.include “behaviortreenode.lua”
function behaviourTree (objID)

local tree = btNew (objID)

local node

local child

node = tree.BT_CreateSelector ()

tree.bt_node_ = node

child = tree.BT_CreateSequence ()

node:BTN_AddChild (child)

node = child

child = tree.BT_CreateAction ("Wander", ACT_WanderAction (objID))

node:BTN_AddChild (child)

node = child

node = node:BTN_GetParent ()

node = node:BTN_GetParent ()

child = tree.BT_CreateCondition ("isWithinDistance", Evaluator_isWithinDistance)

node:BTN_AddChild (child)

node = child

node = node:BTN_GetParent ()

child = tree.BT_CreateCondition ("isVisible", Evaluator_isVisible)

node:BTN_AddChild (child)

node = child

node = node:BTN_GetParent ()

child = tree.BT_CreateAction ("Evade", ACT_EvadeAction (objID))

node:BTN_AddChild (child)

node = child

node = node:BTN_GetParent ()

node = node:BTN_GetParent ()

return tree

end

Behaviour Trees are created almost identically to Decision Trees, by calling the btNew () function. Each Node (branch) is then added to the Tree with any relevant Child being added to the Node (node:BTN_AddChild (child)). Note how the Tree is built by moving down to the end of the branch and then back up using node = node:BTN_GetParent ().

The four possible options for Nodes and Children are:

tree.BT_CreateSelector () - this creates a Selector
tree.BT_CreateSequence () - this creates a Sequence
tree.BT_CreateCondition () - this creates an Evaluator
tree.BT_CreateAction () - this creates an Action
The main difference between Behaviour Trees and Decision Trees is that you can implement multiple conditions in a single branch. For example, in the above code both Evaluator_isWithinDistance and Evaluator_isVisible are both part of the same Sequence.

OK, but what are Sequences and Selectors?

Selectors are similar to if..else statements, and return TRUE if AT LEAST ONE Child is able to execute. Mostly they will have Sequences as their Children, until the LAST Child, which will tend to be an Action.

Sequences execute Children in order, UNTIL a Child FAILS to execute. They will tend to have an Evaluator as their FIRST Child.

One other major thing to note with Behaviour Trees is that Actions AND Evaluators have NO Children.

fsm_enemy_soldier.lua
Again, this file requires a small change by you. The very first line (sky.include “evaluators_enemy_soldier.lua” below) will be created as sky.include “evaluators_new_code.lua” by the AI Editor, so will need changing to match the name you have given to your files.
sky.include "evaluators_enemy_soldier.lua"

sky.include "finitestate.lua"

sky.include "finitestatemachine.lua"

sky.include "finitestatetransitions.lua"

function finiteStateMachine (objID)

local fsm = fsmNew (objID)

fsm:FSM_AddState ("Evade", ACT_EvadeAction (objID))

fsm:FSM_AddState ("Think", ACT_ThinkAction (objID))

fsm:FSM_AddState ("Wander", ACT_WanderAction (objID))

fsm:FSM_AddTransition ("Wander", "Think", Evaluator_isWithinDistance)

fsm:FSM_AddTransition ("Think", "Evade", Evaluator_isVisible)

fsm:FSM_AddTransition ("Think", "Wander", Evaluator_NotVisible)

fsm:FSM_SetState ("Wander")

return fsm

end

Finite State Machines (FSM) are totally different to both Behaviour & Decision Trees and, unfortunately, require a lot more initial setup. As you can see above, I have had to create an extra Action, Think, and an extra Evaluator, NotVisible, to allow the FSM to work with the two original Actions & Evaluators.

Since the FSM can only be in one State at a time, the addition of the new Action and new Evaluator allows for a full set of Transitions between the Wander and Evade States.

However, from a pure programming point of view, they are the easiest to create!

Literally, all you have to do is call the fsmNew () function to create the FSM and then add each State using the fsm:FSM_AddState () function, then create all of the Transitions between States using the fsm:FSM_AddTransition () function and, finally, set the initial State using the fsm:FSM_SetState () function.

The only thing to be mindful of with FSMs is to ensure that all States have at least ONE Transition to another State, otherwise you could have you ai stuck in a State with no way out!

The Behaviours Script

I have included two different Behaviours scripts:

ai_script.lua and ai_script_DP.lua
The first is a straightforward script that can be included in any of your Lua files (via sky.include “ai_script.lua”), and the second is a special version that can be attached directly to your Entity and provides access to all of its options by way of Skyline's Dynamic Properties system.

If you intend to use the standard Behaviours script, then you will need to make a few more changes to your microscript.

At the top add the following:

sky.include “ai_script.lua”

Then, in the postInit () function, add the relevant code to set the Blackboard variables, and the relevant code to set up the Behaviours variables, similar to this:

bb_Set (obj, "targetid", -1)

bb_Set (obj, "team", 1)

ai_maxVelocity = newType.vec3 (10.0, 0.0, 10.0)

ai_maxForce = 12.5

ai_mass = 100.0

ai_runFactor = 1.50

ai_evadeObj = entity.getIDFromTag ("fZirax")

ai_evadePanicDistance = 10.0

ai_evadeRelaxDistance = 30.0

ai_evadeWeight = 0.8;ai_wanderRadius = 25.0

ai_wanderFlag = 2

ai_wanderAOE = 30.0

ai_wanderWeight = 0.5

ai_obstacleAvoidFeelerLength = 10.0

ai_obstacleAvoidWeight = 1.0

and finally, also in the postInit () function, add the code to start your Behaviours:

aiInit (obj);

aiWander ();

aiObstacleAvoid ();

rayID = physics.createRay (); – required for aiObstacleAvoid
Obviously, you will have to create code to update your Behaviours. This is handled by creating Actions specifically for the relevant Behaviours, in the actions_code_new.lua file generated by the AI Editor, as I explained earlier.
Below is a list of all the relevant variables (along with examples of the value required) for the Behaviours:

ai_team

=
1

ai_maxVelocity

=
10.00, 0.00, 10.00

ai_maxForce

=
10.00

ai_mass

=
100.00

ai_runFactor

=
1.50

ai_wanderWeight

=
1.00

ai_wanderRadius

=
25.00

ai_wanderFlag

=
2

ai_wanderAOE

=
30.00

ai_seekObject

=
""

ai_seekRadius

=
2.00

ai_seekWeight

=
1.00

ai_fleeObject

=
""

ai_fleeWeight

=
1.00

ai_fleePanicDistance

=
10.00

ai_fleeRelaxDistance

=
30.00

ai_pursueObject

=
""

ai_pursueRadius

=
2.00

ai_pursueWeight

=
1.00

ai_evadeObject

=
""

ai_evadeWeight

=
1.00

ai_evadePanicDistance

=
10.00

ai_evadeRelaxDistance

=
30.00

ai_followObject

=
""

ai_followArriveRadius

=
10.00

ai_followBehindDistance

=
2.00

ai_followSeparationRadius

=
2.00

ai_followMaxSeparation

=
5.00

ai_followSightRadius

=
2.00

ai_followWeight

=
1.00

ai_arrivalDistance

=
20.00

ai_arrivalStop

=
5.00

ai_obstacleAvoidFeelerLength

=
10.00

ai_obstacleAvoidWeight

=
5.00

Whilst some of the above variables will be easy to understand, I'll just run through them, so that you know exactly what they do.

SEEK
ai_seekObj

-- Target to SEEK (Skyline Tag)

ai_seekRadius

-- Radius from Target inside which SEEK will STOP (float)

ai_seekWeight

-- Weighting for SEEK Behaviour (0.0 - 1.0)

FLEE

ai_fleeObj

-- Target to FLEE (Skyline Tag)

ai_fleePanicDistance

-- Radius from Target inside which FLEE will START (float)

ai_fleeRelaxDistance
-- Radius from Target outside which FLEE will STOP (float)

ai_fleeWeight

-- Weighting for FLEE Behaviour (0.0 – 1.0)

PURSUE

ai_pursueObj

-- Target to PURSUE (Skyline Tag)

ai_pursueRadius

-- Radius from Target inside which PURSUE will STOP (float)

ai_pursueWeight

-- Weighting for PURSUE Behaviour (0.0 - 1.0)

EVADE

ai_evadeObj

-- Target to EVADE (Skyline Tag)

ai_evadePanicDistance
-- Radius from Target inside which EVADE will START (float)

ai_evadeRelaxDistance
-- Radius from Target outside which EVADE will STOP (float)

ai_evadeWeight

-- Weighting for EVADE Behaviour (0.0 - 1.0)

ARRIVAL

ai_arrivalDistance

-- Radius from Target inside which ARRIVAL will START (float)

ai_arrivalStop

-- Radius from Target inside which ARRIVAL will STOP (float)

WANDER

ai_wanderRadius

-- Radius of circle in FRONT of Object which is used for changing direction (float)

ai_wanderFlag

-- Determines which axes Object will WANDER in (int) - SEE COMMENTS

ai_wanderAOE

-- Radius of area inside which Object will WANDER (float)

ai_wanderWeight

-- Weighting for WANDER Behaviour (0.0 - 1.0)
FOLLOW

ai_followObj

-- Target to FOLLOW

ai_followArriveRadius
-- Radius from Target inside which ARRIVAL will START (float)

ai_followBehindDistance
-- Distance BEHIND Target that Object will attempt to stay whilst FOLLOWing (float)

ai_followSeparationRadius
-- Radius of the MINIMUM separation between Object and Target (float)

ai_followMaxSeparation
-- Radius of the MAXIMUM separation between Object and Target (float)

ai_followSightRadius
-- Radius IN FRONT of Target that stops Object and Target colliding (float)

ai_followWeight

-- Weighting for FOLLOW Behaviour (0.0 - 1.0)

OBSTACLE AVOIDANCE

ai_obstacleAvoidFeelerLength
-- Length of Feelers used for OBSTACLE AVOIDANCE (float)

ai_obstacleAvoidWeight

-- Weighting for OBSTACLE AVOIDANCE Behaviour (0.0 - 1.0)
OTHER VARIABLES that need to be set:

ai_mass

-- The MASS of the Object (float)

ai_maxVelocity

-- The MAXIMUM VELOCITY of the Object in each of the 3 Axes (vector)

ai_maxForce

-- The MAXIMUM MOVEMENT FORCE of the Object (float)

ai_runFactor

-- A Factor that INCREASES ai_maxForce and ai_maxVelocity for FLEE and EVADE Behaviours (float)

COMMENTS

ai_wanderFlag
0 for XY Axes, 1 for YZ Axes, 2 for XZ Axes, 3 for XYZ Axes
ARRIVAL
A SEEK or PURSUE Behaviour is required for the ARRIVAL Behaviour to work
FEELERS
Only work in 2D around the Y AXIS -45 / 0 / +45
WANDER
If WANDER is set up with FLEE and/or EVADE, then the following will occur:

1. WANDER will STOP when FLEE or EVADE STARTS

2. WANDER will RESTART when FLEE or EVADE STOPS

Now that I've explained the variables required for these Behaviours, I'll talk about the other version of the Script (ai_script_DP.lua). As I said earlier, this script is attached directly to your Entity, and provides access to all of its options by way of Skyline's Dynamic Properties.

So, select an Entity (without a microscript) in your Scene, right-click and select Lua – Add External Script and then Open Script From File as shown below:

[image: image17.png]
This will open the usual Windows File Dialog, allowing you to select the ai_script_DP.lua file. Once Skyline has added the file, you will see the usual Script option in the Properties tab. If you open up this option, you will see that the Dynamic Properties field is now populated:

[image: image18.png]
[image: image20.png]
You may also have noticed the little gear icon at the top of the tab, next to the pencil. If you click on this, you will see the following:
[image: image19.png]
This is one of the brilliant things about Dynamic Properties in Skyline. If you set them up correctly they will appear in an Editor allowing you to change them at will, without having to touch the code. This system also allows you to set these properties on a per Entity basis. By simply attaching the script to different Entities, each one can have its own values set in the Dynamic Properties panel.
And that is all you have to do to give your Entity the relevant Behaviours. This script will only allow you to add the Behaviours and not change between them, so you will have to write your own code to do that.
To get and set these variables, you can use the following functions in your own code:
entity.getDynamicProperty (objID, "paramName")

and
entity.setDynamicProperty (objID, “paramName”, “paramValue)

There is one important thing I will mention regarding Dynamic Properties:
If your Dynamic Property is meant to be a Number, then you will have to convert it from a String using the tonumber function (as all Dynamic Properties are stored as Strings).
For example:

myInt = tonumber (entity.getDynamicProperty (1, “myProperty”))

By the way, you can also attach the ai_script_DP.lua file to an Entity and save the whole thing as a Preset if you want.
One final thing, the graphic in the logo at the top of the Dynamic Properties panel came from wikimedia, and was released as public domain by Alejandro Zorrilal Cruz.
The original file can be found here:
http://lifeboat.com/images/artificial.intelligence.jpg.
Well, that’s it for the explanation of the Skyline AI System.

I hope that the above instructions are relatively easy to follow? But, as I said earlier, feel free to hit me up on the Skyline Forum, or via PM if you need any help.
2 | Page
Copyright © SpinalSoft (AU) 2017

